From 2803e4e942b653e5c15bbf8820c32733e1d1b430 Mon Sep 17 00:00:00 2001
From: Jan Eggers <janeggers@untergeekPro.local>
Date: Wed, 1 Jan 2025 22:45:42 +0100
Subject: [PATCH] V0.1.5 mit Parameter zum AIORNOT-Abschalten

---
 pyproject.toml              |   2 +-
 src/.DS_Store               | Bin 6148 -> 8196 bytes
 src/aichecker/check_bsky.py |  12 +++++++-----
 3 files changed, 8 insertions(+), 6 deletions(-)

diff --git a/pyproject.toml b/pyproject.toml
index 300929e..c21a22e 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -10,7 +10,7 @@ authors = [
 maintainers = [
   {name = "Jan Eggers", email = "jan.eggers@hr.de"},
 ]
-version = "0.1.4.1" # Neue Versionsnummern für pip-Update
+version = "0.1.5" # Neue Versionsnummern für pip-Update
 description = "Bluesky-Konten auf KI-Inhalte checken"
 requires-python = ">=3.8"
 dependencies = [
diff --git a/src/.DS_Store b/src/.DS_Store
index db617168bffd0d1ae3eae12504f52b7feb993d97..069cd10ae3ba86329471975e6eec1eb5d4113c49 100644
GIT binary patch
literal 8196
zcmeHMU2GIp6h3EKU}m5)Eq|R2KSMWy+7-5?5DEfITa-$%wLkO^SZ8-eI(9l!c4l{h
zrb(mmC!+C5{E0qlVl+IMVBo>T=nE$PL_-iY@kJku@?@gCX!P8BXZbC>nD`UsCik8>
z_ndQQ&YADryJr>vu&rn{0n`J4Or23}J`J-pCTIPICPg#VM3L+PY{<hnjfGtK2JLtv
zjzAoNI0A75;t0eM_%B3&&TQ7?o1FVX8jo=V;t1T95n%g+L7mY|L}vu$TL%ri1R%;v
z0N&`D>HuzIL^Ko889})zttqMpj7%{qF;JM3++gZNGZCE;RG0$_bHM1%7*#09?@o3G
zR|m`p8jo=V;t1Rr0hT@rnBY+5K6Z8e9!%z3KS$Ejxk=Xv!gTsPN>$Z!=FXGn$@Ap{
zePe#PFEqnq&}J4!8Q1UoZmx1|=Jq*uIjb#h_r1_`JiEXR9Lpw^{ezBY`Q<jh=ve``
z?Gpl7k(I1gKQ-0Tv^ixox2C64##C!_I%TwM*fc$@$V-yzxAtbo-3iZsRyc#vh5$9!
zId^<^&)lHYE<CGRTJh{c#WO{nukRaFhliZJ@AWyy?5wshAlEvH?J3wLa%nK{yTu7F
z$ZEBD)6ExMGqiWQE>jMMLi<R_u0{gC5Vmv0tfmzMyVoW?r(}1KHksD3mAWTG$M=GL
zb|D~|%%p__%E<*wRy3?>OmEz>qhohh&$*gA7HYNXB6Wmf<b}?oj$IfwgS_ooj(2FF
z>{#L0V95!boNM=c=7g=(Vz+W`>9YD7J)tkJh=k%5Ls?78L&cnPxafpO`8`(ZhPvOP
z2i)sh>@Jq9ol>|YsT=wzle8CX8ZBAo(`)s+)&79ol{Hf+rqp$6|2Vx|MGM4Cle$44
zaLt_UDw-wCHmRHS!IJP=(e{YRt?D*?DDO{9kc$C%kP_1wy-h#J?%ZVtVfUo%v8OsK
zWV=W<5{#JzySq&IiXN(yX8BvAd1kcBazdX8c|Z)kTb75}f;%nCw$9Zot6%zXuTB=4
z<CPr3GrbA{Ywb%}mXn!##9I-OU3?wJ*r}yM1GK<>&;!F@K^dNd7vTiF0Vm-Md;}lE
z7jPcFf^Xnk_yI1$FYr730e>Q(f_1nG4Q#+9rf@U1;udVj-PnnHunPxp1V`}z9>ha9
zfgVocVLXP9;}iHKK7}vf%lHbuhOgtBcnaUc(|86y#82@v{2VXfPxv!l#9#3@yd<Hd
zN-LyQk|C{@8l*-kEzws$)}%__j0nCmN^NvC%Z@;K6YU7n;o0&gasLBq=f9daUoYU9
zQnzUFl9kE3?rq+*HFFtJ0)iFPU5#Z9;A>#d0nFd`b;x57(i7_P6_uR2l1(DJ1_=4~
z5t+ePn-^)XZjcH2+MI}8vzFLB+FZdV8dEZ5nI>^oO{AL?$|bETVjDLSi-J*Gw<wfV
zT6M&3-=VNX*MRehM0*FVbXNNtkbMi@h12i>d_s`@4!(yU;S#}ACYaXaN)FW|-ihmQ
zJ*Kf4TW}k0#~rwnK--0T@geNNUV`j?0&Nyed<@6YCE%9v2p+{LoF>>ljnCk5d>&8W
zO9bFoBLKgR?+EZ+hU9}4FbazA&ko5_U%_*I?+{5VV7}Hc=585*Dj}_B_5ZG$fB(Pb
z8nG~rKpcVpcLcDyqpyP<`#0M~S*>kQe}p<~Om9X|ZbAc7Ve`BkCwlo0L%KF1Stg=0
cf|7*VKmH+re&EID|7<^5<MW>b@-`X%0wQ-OjsO4v

delta 122
zcmZp1XfcprU|?W$DortDU=RQ@Ie-{MGjUEV6q~50$jG!YU^nAr0~wadTf~GXD+%1%
zd|b?dabv@2=EdwB9D>Y1wLl=i4J2Ga+BOz`XP(S2;|MaBfsuiM1w=DJ3<isBj^~-f
F3;>2>6x#p*

diff --git a/src/aichecker/check_bsky.py b/src/aichecker/check_bsky.py
index c2c2a56..6819439 100644
--- a/src/aichecker/check_bsky.py
+++ b/src/aichecker/check_bsky.py
@@ -159,7 +159,7 @@ def fetch_user_posts(handle: str, limit: int = 100, cursor = None) -> list:
     
     return posts[:limit]
         
-def check_handle(handle:str, limit:int = 20, cursor = None):
+def check_handle(handle:str, limit:int = 20, cursor = None, check_images = True):
     # Konto und Anzahl der zu prüfenden Posts
     if handle == '':
         return None
@@ -177,12 +177,14 @@ def check_handle(handle:str, limit:int = 20, cursor = None):
     df = pd.DataFrame(posts)
 
     # Now add probability check for each post text
-    print("Checke Texte:")
-    df['detectora_ai_score'] = df['text'].apply(detectora_wrapper)
+    if True: 
+        print("Checke Texte:")
+        df['detectora_ai_score'] = df['text'].apply(detectora_wrapper)
     
     # Now add "ai" or "human" assessment for images 
-    print("\nChecke Bilder:")
-    df['aiornot_ai_score'] = df.apply(lambda row: aiornot_wrapper(row['author_did'], row['embed']), axis=1)
+    if check_images:
+        print("\nChecke Bilder:")
+        df['aiornot_ai_score'] = df.apply(lambda row: aiornot_wrapper(row['author_did'], row['embed']), axis=1)
     print()
     return df
 
-- 
GitLab