Skip to content
Snippets Groups Projects
Unverified Commit ee634f03 authored by Ahmet Oner's avatar Ahmet Oner Committed by GitHub
Browse files

Update README.md

parent cba4ca4e
Branches
No related tags found
No related merge requests found
# whisper-webservice
\ No newline at end of file
# Whisper Webservice
The webservice will be available soon.
Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.
## Docker Setup
The docker image will be available soon
## Setup
We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.7 or later and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) for their fast tokenizer implementation and [ffmpeg-python](https://github.com/kkroening/ffmpeg-python) for reading audio files. The following command will pull and install the latest commit from this repository, along with its Python dependencies
pip install git+https://github.com/openai/whisper.git
It also requires the command-line tool [`ffmpeg`](https://ffmpeg.org/) to be installed on your system, which is available from most package managers:
```bash
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg
# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg
# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg
```
## Command-line usage
The following command will transcribe speech in audio files, using the `medium` model:
whisper audio.flac audio.mp3 audio.wav --model medium
The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
whisper japanese.wav --language Japanese
Adding `--task translate` will translate the speech into English:
whisper japanese.wav --language Japanese --task translate
Run the following to view all available options:
whisper --help
See [tokenizer.py](whisper/tokenizer.py) for the list of all available languages.
## Python usage
Transcription can also be performed within Python:
```python
import whisper
model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])
```
Internally, the `transcribe()` method reads the entire file and processes the audio with a sliding 30-second window, performing autoregressive sequence-to-sequence predictions on each window.
Below is an example usage of `whisper.detect_language()` and `whisper.decode()` which provide lower-level access to the model.
```python
import whisper
model = whisper.load_model("base")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
# print the recognized text
print(result.text)
```
## License
The code and the model weights of Whisper are released under the MIT License. See [LICENSE](LICENSE) for further details.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment